Progress in catalyst of reforming methane process - a potential solution for effective use of CO2-rich natural gas sources

  • Luu Cam Loc
Keywords: CO2-rich natural gas, dry reforming, bi-reforming, catalyst

Abstract

The rapid increase in emissions of major greenhouse gases such as CO2 and CH4 in the last decade has seriously affected the climate change and the living environment in the world in general and in Vietnam in particular. In addition, the demand for efficient use of CO2-rich natural gas has promoted studies to find new, highly active and stable catalysts for the methane reforming process. NiO has proven to be the most suitable catalyst for industrial application of the reforming process. To overcome the disadvantages of NiO-based catalysts such as coke formation and sintering at high reaction temperatures, many diverse researches from using new carriers to promoting catalyst by alkali, alkaline earth metals and other metal oxides to improve the catalyst synthesis method have been conducted. As a result, highly efficient catalysts were created, partly thanks to the reduction of the reaction temperature from 800oC to 700oC, the coke formation significantly decreased and the stable working time of the catalyst increased to over 600 hours.

References

1. Alfons Baiker. Utilization of carbon dioxide in heterogeneous catalytic synthesis. Applied organometallic chemistry. 2000; 14(12): p. 751 - 762.
2. Iwao Omae. Aspects of carbon dioxide utilization. Catalysis Today. 2006; 115 (1 - 4): p. 33 - 52.
3. World Meteorological Organization (WMO). WMO Greenhouse Gas Bulletin (GHG Bulletin) - N°8: The State of Greenhouse Gases in the atmosphere based on global observations through 2011. 2012.
4. Nicola Jones. How the world passed a carbon threshold and why it matters. The Yale School of Forestry & Environmental Studies. January 26 - 2017.
5. G.Holian, A.P.Sokolov, R.G.Prinn. MIT joint program on the science and policy of global change. 2001.
6. P.A.Dunn, M.G.Kozar, Budiyono. Annual Convention Proceedings. 1996; 25: p. 117 - 130.
7. Donald J.Wuebbles, Katharine Hayhoe. Atmospheric methane and global change. Earth-Science
Reviews. 2002; 57 (3 - 4): p. 177 - 210.
8. H.J.Bin, W.Sh.Wu, L.Yong, ZA. Z.Ci, W.X.Yu. Advances in climate change research. 2012; 3(3): p. 174 - 178.
9. Thomas R.Anderson, Ed Hawkins, Philip D.Jones. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models. Endeavour. 2016; 40(3): p. 178 - 187.
10. Erik Velasco, Matthias Roth. Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by Eddy Covariance Technique. Geography Compass. 2010; 4(9): p. 1238 - 1259.
11. Dori Yosef Kalai. Dry reforming of methane: catalyst development and thermodynamic analysis. Master Thesis, University of Stavanger. 2015.
12. ABC Australia. Paris climate talks: France releases 'ambitious, balanced' draft agreement at COP21. 12th December 2015.
13. Bộ Tài nguyên và Môi trường. Báo cáo cập nhật hai năm một lần, lần thứ nhất của Việt nam cho công ước khung của Liên Hợp Quốc về biến đổi khí hậu. Nhà xuất bản Tài nguyên - Môi trường và Bản đồ Việt Nam. 2014.
14. OPEC Annual Statistical Bulletin. Organization of the petroleum exporting countries. 2016.
15. Nguyễn Thị Hoa. Nghiên cứu kỹ thuật phương án khai thác, thu gom, xử lý và đưa vào sử dụng mỏ khí Cá Voi Xanh (CVX). Trung tâm Ứng dụng và Chuyển giao công nghệ (CTAT). 2013.
16. Nitin Kumar, Amitava Roy, Zi Wang, Enrico Mario L’Abbate, Daniel Haynes, Dushyant Shekhawat, J.J.Spivey. Bi-reforming of methane on Ni-based pyrochlore catalyst. Applied Catalysis A: General. 2016; 517: p. 211 - 216.
17. J.R.H.Ross, A.N.J van Keulen, M.E.S.Hegarty, K.Seshan. The catalytic conversion of natural gas to useful products. Catalysis Today. 1996; 30 (1 - 3): p. 193 - 199.
18. D.J Wilhelm, D.R Simbeck, A.D Karp, R.L.Dickenson. Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel processing technology. 2001; 71 (1 - 3): p. 139 - 148.
19. Wonjun Cho, Hyejin Yu, Yonggi Mo. Recent advances in carbon capture and storage. Chapter 9: CO2 conversion to chemicals and fuel for carbon utilization. 2017: p.195 - 208.
20. J.Youn. The status of DME fuel in Korea. The 6th Korea-China-Japan Petroleum Technology Congress, 4 - 6 September 2013.
21. Jasmin Blanchard, Ana Julia Nsungui, Nicolas Abatzoglou, François Gitzhofer. Dry Reforming of Methane with a Ni/Al2O3‐YSZ Catalyst: The Role of the Catalyst Preparation Protocol. The Canadian Journal of Chemical engineering. 2007; 85(6): p. 889 - 899.
22. Jens R.Rostrup - Nielsen. Syngas in perspective. Catalysis today. 2002; 71(3 - 4): p. 243 - 247.
23. Nitin Kumar, Zi Wang, Swarom Kanitkar, J.J.Spivey. Methane reforming over Ni-based pyrochlore catalyst: deactivation studies for different reactions. Applied Petrochemical Research. 2016; 6(3): p. 201 - 207.
24. U.Oemar, K.Hidajat, S.Kawi. Role of catalyst support over PdO-NiO catalysts on catalyst activity and stability for oxy-CO2 reforming of methane. Applied Catalysis A: General. 2011; 402 (1 - 2): p. 176 - 187.
25. S.Assabumrungrat, S.Charoenseri, N.Laosiripojana, W.Kiatkittipong, P.Praserthdam. Effect of oxygen addition on catalytic performance of Ni/SiO2·MgO toward carbon dioxide reforming of methane under periodic operation. International Journal of Hydrogen Energy. 2009; 34: p. 6211 - 6220.
26. S.B.Wang, G.Q.Lu, G.J.Millar. Carbon dioxide reforming of methane produces synthesis gas with over metal supported catalysts: state of the at. Energy Fuel. 1996; 10: p. 896 - 904.
27. G.A.Olah, G.K. Surya Prakash, A.Goeppert. Anthropogenie chemical carbon cycle for a sustainable future. Journal of the American Chemical Society. 2011; 133(33): p. 12881 - 12898.
28. N.Kumar, M.Shojaee, J.Spivey. Current Opinion in Chemical Engineering. 2015; 9: p. 8 - 15.
29. T.L.Roussière. Catalytic reforming of methane in the presence of CO2 and H2O at high pressure. 2013.
30. G.A.Olah, A.Goeppert, M.Czaun, T.Mathew, R.B.May, G.S.Prakash. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen. Journal of the American Chemical Society. 2015; 137: p. 8720 - 8729.
31. Glenn Jones, Jon Geest Jakobsen, Signe S.Shim, Jesper Kleis, Martin P.Andersson, Jan Rossmeisl, FrankAbild-Pedersen, ThomasBligaard, StigHelveg, BeritHinnemann, Jens R.Rostrup-Nielsen, IbChorkendorff, JensSehested, Jens K.Nørskov. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. Journal of Catalysis. 2008; 259: p. 147 - 160.
32. Behzad Nematollahi, Mehran Rezaei, Majid Khajenoori. Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts. International Journal of Hydrogen Energy. 2011; 36: p. 2969 - 2978.
33. J.M.Ramallo-López, F.G.Requejo, A.F.Craievich, J.Wei, M.Avalos-Borja, E.Iglesia. Complementary methods for cluster size distribution measurements: supported platinum nanoclusters in methane reforming catalysts. Journal of Molecular Catalysis A: Chemical. 2005; 228: p. 299 - 307.
34. Cyrille Rioche, Shrikant Kulkarni, Frederic C.Meunier, John P.Breen, Robbie Burch. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Applied Catalysis B: Environmental. 2005; 61: p. 130 – 139.
35. S.Schuyten, Eduardo E.Wolf. Selective combinatorial studies on Ce and Zr promoted Cu/Zn/Pd catalysts for hydrogen productio via methanol oxidative reforming. Catalysis letters. 2006; 106: p. 7 - 14.
36. Velu Subramani, Pradeepkumar Sharma, Lingzhi Zhang, Ke Liu. Catalytic steam reforming technology for the production of hydrogen and syngas. Hydrogen and Syngas Production and Purification Technologies. 2009: p. 14 - 126.
37. M.Rezaei, S.M.Alavi, S.Sahebdelfar, Zi-Feng Yan. Syngas production by methane reforming with carbon dioxide on noble metal catalysts. Journal of Natural Gas Chemistry. 2006; 15(4): p. 327 - 334.
38. Guojie Zhang, Lanxia Hao, Yong Jia, Yannian du, Yongfa Zhang. CO2 reforming of CH4 over efficient bimetallic Co-Zr/AC catalyst for H2 production. International Journal of Hydrogen Energy. 2015; 40(37): p. 12868 - 12879.
39. Hyun-Seog Roh, Ki-Won Jun, Seung-Chan Baek, Sang-Eon Park. A Highly Active and Stable Catalyst for Carbon Dioxide Reforming of Methane: Ni/Ce-ZrO2/θ-Al2O3. Catalysis letters. 2002; 81(3 - 4): p. 147 - 151 (2002).
40. M.Capeness, M.Edmundson, L.Horsfall. Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20. New biotechnology. 2015; 32: p. 727 - 731.
41. Dapeng Liu, Xian Yang Quek, Wei Ni Evelyn Cheo, Raymond Lau, Armando Borgna, Yanhui Yang. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal–support interaction. Journal of Catalysis. 2009; 266: p. 380 - 390.
42. G.A.Olah, A.Goeppert, M.Czaun, G.K.Prakash. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis. J. American Chemical Society. 2013; 135(2): p. 648 - 650.
43. J.Rostrupnielsen, J.B.Hansen. CO2-Reforming of Methane over Transition Metals. Journal of Catalysis. 1993; 144: p. 38 - 49.
44. Shaobin Wang, G. Q(Max) Lu. Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane. Applied Catalysis B: Environmental. 1998; 16: p. 269 - 277.
45. D.Hu, J.Gao, Y.Ping, L.Jia, P.Gunawan, Z.Zhong, G.Xu, F.Gu, F.Su. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production. Industrial & Engineering Chemistry Research. 2012; 51(13): p. 4875 - 4886.
46. J.Guo, H.Lou, H.Zhao, D.Chai, X.Zheng. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General. 2004; 273(1): p. 75 - 82.
47. Hyunseog Roh, Ki Won Jun. Carbon dioxide reforming of methane over Ni catalysts supported on Al2O3 modified with La2O3, MgO, and CaO. Catalysis surveys from Asia. 2008; 12(4): p. 239 - 252.
48. N.Rahemi, M.Haghighi, A.A.Babaluo, M.F.Jafari, P.Estifaee. Synthesis and physicochemical characterizations of Ni/Al2O3-ZrO2 nanocatalyst prepared viaimpregnation method and treated with non-thermal plasma for CO2 reforming of CH4. Journal of Industrial and Engineering Chemistry. 2013; 19: p. 1566 - 1576.
49. Phan Hồng Phương, Lưu Cẩm Lộc, Nguyễn Trí, Nguyễn Trọng Tiến, Nguyễn Huỳnh Phương Thảo, Nguyễn Quốc Tuấn, Nguyễn Thị Thùy Vân, Hoàng Tiến Cường, Hà Cẩm Anh. Ảnh hưởng của tỷ lệ NiO/MgO đến hoạt tính xúc tác cơ sở Ni mang trên α-Al2O3 trong phản ứng reforming khô CH4. Tạp chí Xúc tác - Hấp phụ. 2017; 6(2): p. 30 - 35.
50. Luu Cam Loc, Phan Hong Phuong, Nguyen Tri. Role of CeO2 promoter in NiO/α - Al2O3 catalyst for dry reforming of methane. AIP Conference Proceedings. 2017.
51. Luu Cam Loc, Phan Hong Phuong, Nguyen Huynh Phuong Thao, Nguyen Tri, Nguyen Thi Thuy Van, Hoang Tien Cuong, Ha Cam Anh. Influence of preparation method on the activity of NiO+MgO/Al2O3 catalyst in dry reforming of methane. Journal of Chemistry. 2017; 55(3e): p. 1 - 7.
52. Phan Hong Phuong, Luu Cam Loc, Pham The Sang, Nguyen Tri. Combined steam and CO2 reforming of CH4 over Nickel catalysts based on Al2O3-MgO. Tạp chí Khoa học - Công nghệ. 2017; 55(1B): p. 49 - 56.
53. D.Zhao, J.Sun, Q.Li, G.D.Stucky. Morphological control of highly ordered mesoporous silica SBA-15. Chemistry of Materials. 2000; 12(2): p. 275 - 279.
54. H.S.Roh, K.Y.Koo, J.H.Jeong, Y.T.Seo, D.J.Seo, Y.S.Seo, W.L.Yoon, S.B.Park. Combined reforming of methane over supported Ni catalysts. Catalysis Letters. 2007; 117(1 - 2): p. 85 - 90.
55. Phan Hong Phuong, Luu Cam Loc, Hoang Tien Cuong, Nguyen Tri. Effect of NiO loading and thermal treatment duration on performance of Ni/SBA-15 catalyst in combined steam and CO2 reforming of CH4. Materials Transactions. 2018; 59(12): p.1898 - 1902.
56. M.Zhang S.Ji, L.Hu, F.Yin, C.Li, H.Liu. Structural Characterization of Highly Stable Ni/SBA-15 Catalyst and Its Catalytic Performance for Methane Reforming with CO2. Chinese Journal of Catalysis. 2006; 27(9): p. 777 - 781.
57. S.Sidik, S.Triwahyono, A.Jalil, M.Aziz, N. Fatah, L.Teh. Tailoring the properties of electrolyzed Ni/mesostructured silica nanoparticles (MSN) via different Ni loading methods for CO2 reforming of CH4. Journal of CO2 Utilization. 2016; 13: p. 71 - 80.
58. Q. Zhuang, Y. Qin, and L. Chang. Promoting effect of cerium oxide in supported nickel catalyst for hydrocarbon steam-reforming. Applied catalysis. 1991; 70: p. 1 - 8.
59. Luu Cam Loc, Phan Hong Phuong, Dang, Putthea, Nguyen Tri, Nguyen Thi Thuy Van, Hoang Tien Cuong. Effect of CeO2 morphology on performance of NiO/CeO2 catalyst in combined steam and CO2 reforming of CH4. International Journal of Nanotechnology. 2019.
60. N.Wang, W.Qian, W.Chu, F. Wei. Crystal-plane effect of nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for methane dry reforming. Catalysic Science & Technology. 2016; 6(10): p. 3594 - 3605.
61. Xianjun Du, Dengsong Zhang, L iyi Shi, Ruihua Gao, Jianping Zhang. Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane. The Journal of Physical Chemistry. 2012; 116(18): p. 10009 - 10016.
62. Jianjun Guo, Hui Lou, Xiaoming Zheng. The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon. 2007; 45(6): p. 1314 - 1321.
63. Yaser Vafaeian, Mohammad Haghighi, Sogand Aghamohammadi. Ultrasound assisted dispersion of different amount of Ni over ZSM-5 used as nanostructured catalyst for hydrogen production via CO2 reforming of methane. Energy conversion and management. 2013; 76: p. 1093 - 1103.
64. M.S.Fan, A.Z.Abdullah, S.Bhatia. Catalytic technology for carbon dioxide reforming of methane to synthesis gas.Chem Cat Chem. 2009; 1(2): p. 192 - 208.
65. Leilei Xu, Huanling Song, Lingjun Chou. Carbon dioxide reforming of methane over ordered mesoporous NiO-MgO-Al2O3 composite oxides. Applied Catalysis B: Environmental. 2011; 108: p. 177 - 190.
66. M.A.Soria, C.Mateos-Pedrero, A.Guerrero-Ruiz, I.Rodríguez-Ramos. Thermodynamic and experimental study of combined dry and steam reforming of methane on Ru/ ZrO2-La2O3 catalyst at low temperature. International Journal of hydrogen energy. 2011; 36(23): p. 15212 - 15220.
67. J.Juan-Juan, M.C.Román-Martínez, M.J.IllánGómez. Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Applied Catalysis A: General. 2006; 301(1): p. 9 - 15.
68. Phan Hong Phuong, Luu Cam Loc, Nguyen Tri Vu Thanh Thuy Tien, Nguyen The Tung. Effect of alkalizing method on characteristics and performance of Ni/SBA-15 catalyst in combined steam and CO2 reforming of CH4. The 9th International Workshop on Advanced Materials Science and Nanotechnology. 2018.
69. M.M.Danilova, Z.A.Fedorova, V.A.Kuzmin, V.I.Zaikovskii, A.V.Porsin, T.A.Krieger. Combined steam and carbon dioxide reforming of methane over porous nickel based catalysts. Catalysis Science & Technology. 2015; 5(5): p. 2761 - 2768.
70. Phan Hong Phuong, Luu Cam Loc, Nguyen Tri, Nguyen The Tung. Effect of NH3-alkalization on catalytic performance of Ni/SBA-15 in combined steam and CO2 reforming of CH4. Vietnam Journal of Catalysis and Adsorption. 2019.
71. Hua-Ping Ren, Yong-Hong Song, Wei Wang, Jian-Gang Chen, Jie Cheng, Jinqiang Jiang, Zhao-Tie Liu, Zhong-Wen Liu, Zhengping Hao. Insights into CeO2-modified Ni-Mg-Al oxides for pressurized carbon dioxide reforming of methane. Chemical Engineering Journal. 2015; 259: p. 581 - 593.
72. Xu Wenqian; Liu Zongyuan; C.Johnston-Peck Aaron, D.Senanayake Sanjaya, Zhou Gong, Stacchiola Dario, A.Stach Eric, A.Rodriguez José. Steam Reforming of Ethanol on Ni/CeO2: Reaction Pathway and Interaction between Ni and the CeO2 Support. ACS Catalysis. 2013; 3(5): p. 975 - 984.
73. Edson L.Foletto, Ricardo W.Alves, Sérgio L.Jahn. Preparation of Ni/Pt catalysts supported on spinel (MgAl2O4) for methane reforming. Journal of power sources. 2006; 161(1): p. 531 - 534.
74. M.García-Diéguez, I.S.Pieta, M.C.Herrera, M.A.Larrubia, L.J.Alemany. Improved Pt-Ni nanocatalysts for dry reforming of methane. Applied Catalysis A: General, 377(1 - 2), 191 - 199 (2010).
75. Marco Ocsachoque, Francisco Pompeo, Gloria Gonzalez. Rh-Ni/CeO2-Al2O3 catalysts for methane dry reforming. Catalysis Today. 2011; 172(1): p. 226 - 231.
76. Therdthianwong, C.Siangchin, A.Therdthianwong. Improvement of coke resistance of Ni/Al2O3
catalyst in CH4/CO2 reforming by ZrO2 addition.Fuel Processing Technology. 2008; 89(2): p. 160 - 168.
77. H.W.Chen, C.Y. Wang, C.H.Yu, L.T.Tseng, P.H.Liao. Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts. Catalysis Today. 2004; 97(2): p. 173 - 180.
78. A.Valentini, N.L.V.Carreño, L.F.D.Probst, P.N.Lisboa-Filho, W.H.Schreiner, E.R.Leite, E.Longo. Role of vanadium in Ni:Al2O3 catalysts for carbon dioxide reforming of methane. Applied Catalysis A: General. 2003; 255(2): p. 211 - 220.
79. Phan Hồng Phương, Lê Hoàng Thanh Dũng, Lê Ngọc Tài, Nguyễn Trí, Lưu Cẩm Lộc. Ảnh hưởng phụ gia V2O5 đến hoạt tính của xúc tác NiO/CeO2 trong phản ứng reforming CH4 bằng CO2 và hơi nước.Tạp chí Hóa học. 2018; 56(3E12): p. 155 - 159 (2018).
Published
2019-04-29
How to Cite
Luu Cam Loc. (2019). Progress in catalyst of reforming methane process - a potential solution for effective use of CO2-rich natural gas sources. Petrovietnam Journal, 4, 51-61. https://doi.org/10.25073/petrovietnam journal.v4i0.254
Section
Articles